Table of Contents
计算级数的例题
- 求 $ \sum^{\infty}_ {n=1} \arctan\frac{1}{n^{2} + n + 1} $
我们需要利用等式:
$ \arctan{a} - \arctan{b} = \arctan{\left(\frac{a-b}{1+ab}\right)} $
于是我们有
$ \arctan{\left(\frac{1}{n^{2}+n+1}\right)} = \arctan{(n+1)} - \arctan{(n)} $
则
$ \sum^{\infty}_ {n=1} \arctan\frac{1}{n^{2} + n + 1} = \lim_ {n \to \infty}{(\arctan{(n+1)} - \arctan{1})} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} $
- 求 $ \sum^{\infty}_ {n=1}\frac{n}{3^{n}} $
这里我们利用 weighted geometric series,其一般形式为:
$ \sum^{\infty}_ {n=1}nx^{n} = \frac{x}{(1-x)^{2}}, \| x \| < 1 $
这里,我们让 $ x = \frac{1}{3} $,则有
$ \sum^{\infty}_ {n=1}\frac{n}{3^{n}} = \sum^{\infty}_ {n=1}n\left(\frac{1}{3}\right)^{n} = \frac{\frac{1}{3}}{(1 - \frac{1}{3})^{2}} = \frac{3}{4} $
判断级数的收敛性
- $ \sum^{\infty}_ {n=2}(\sqrt[n]{n}-1)^{n} $
设 $ a_ {n} = (\sqrt[n]{n} - 1)^{n} $,由于 $ \lim_ {n \to \infty}n^{\frac{1}{n}} = 1 $,对大的 n,有 $ n^{\frac{1}{n}} \approx 1 + \frac{\log{n}}{n} $,(使用 first-order expansion of the exponential function)
则有:
$ \sqrt[n]{n} - 1 \approx \frac{\log{n}}{n} $
则
$ a_ {n} = (\sqrt[n]{n} - 1)^{n} \approx \left(\frac{\log{n}}{n}\right)^{n} $
由于 $ \log{a_ {n}} \approx n\log{(\frac{\log{n}}{n})} = n(\log{\log{n}} - \log{n}) $
当 $ n \to \infty, \log{\log{n}} < \log{n} $,则
$ \log{a_ {n}} \to - \infty \Rightarrow a_ {n} \to 0 $
则可知 $ \sum^{\infty}_ {n=2}(\sqrt[n]{n}-1)^{n} $ 是收敛的