Table of Contents
THE LINEAR PROGRAMMING PROBLEM
MATHEMATICAL STATEMENT
线性规划在standard form中的数学定义是找到值 $ x_ {1} \ge 0, x_ {2} \ge 0, \ldots, x_ {n} \ge 0 $和min z满足
$ \begin{equation} \begin{array}{ccc} c_ {1}x_ {1} & + & c_ {2}x_ {2} & + & \cdots & + & c_ {n}x_ {n} & = & z (Min) \\ a_ {11}x_ {1} & + & a_ {12}x_ {2} & + & \cdots & + & a_ {1n}x_ {n} & = & b_ {1} \\ a_ {21}x_ {1} & + & a_ {22}x_ {2} & + & \cdots & + & a_ {2n}x_ {n} & = & b_ {2} \\ \vdots & & \vdots & & \vdots & & \vdots & & \vdots \\ a_ {m1}x_ {1} & + & a_ {m2}x_ {2} & + & \cdots & + & a_{m n}x_ {n} & = & b_ {m} \end{array} \end{equation} $
用向量矩阵标记,我们可重写为
$ \begin{equation} Minimize \qquad c^{T}x = z \end{equation} $
$ \begin{equation} \text{subject to} \qquad Ax = b, \qquad A: m \times n \end{equation} $
$ \begin{equation} \qquad \qquad \qquad x \ge 0 \end{equation} $
standard form的线性规划的dual的定义是找到值 $ \pi_ {1}, \pi_ {2}, \ldots, \pi_ {m} $和最大值v满足
$ \begin{equation} \begin{array}{ccc} b_ {1}\pi_ {1} & + & b_ {2}\pi_ {2} & + & \cdots & + & b_ {m}\pi_ {m} & = & v (Max) \\ a_ {11}\pi_ {1} & + & a_ {21}\pi_ {2} & + & \cdots & + & a_ {m1}\pi_ {m} & \le & c_ {1} \\ a_ {12}\pi_ {1} & + & a_ {22}\pi_ {2} & + & \cdots & + & a_ {m2}\pi_ {m} & \le & c_ {2} \\ \vdots & & \vdots & & \vdots & & \vdots & & \vdots \\ a_ {1n}\pi_ {1} & + & a_ {2n}\pi_ {2} & + & \cdots & + & a_{m n}\pi_ {m} & \le & c_ {m} \end{array} \end{equation} $
用向量矩阵标记,我们可重写为
$ \begin{equation} Maximize \qquad b^{T}\pi = v \end{equation} $
$ \begin{equation} \text{subject to} \qquad A^{T}\pi \le c, \qquad A: m \times n \end{equation} $